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ABSTRACT: The study presents the bending solutions of thick rectangular plates with clamped at three 
edges and simply supported at the remaining one edge (CCCS) carrying a uniformly distributed load 
applying energy method. Higher order shear deformation plate theory was used to formulate the governing 
differential equation by applying the principles of elasticity. Total potential energy equation of a thick plate 
was formulated from the constitutive relations thereafter the three general governing differential equations 
for the determination of the out of plane displacement and shear deformations rotation along the direction of 
x and y coordinates were obtained. The total potential energy was in the same way used by the method of 
direct variation to obtain three simultaneous direct governing equations for the determination of deflection 
and shear deformations coefficients. From the formulated relationship, formulars for calculation of the in-
plane and out plane displacement shear deformation rotations along x and y axis, stresses, moments and 
stress-resultants expressions were deduced. Unlike First order shear deformation theory (FSDT), this higher 
order shear deformation theory as was proposed does not require shear correction factor in the analysis. It 
can be concluded that the rectangular plate can be classified as thick plate, when the plate span-to-depth 
ratios is less or equal to twenty (�/� ≤ ��); it can be classified as moderately thick plate, when the plate 
span-to-depth ratios is between twenty and fifty: (�� ≤ �/� ≤ 
�); when the plate span-to-depth ratios is 
greater or equal to twenty plate: �/� ≥  
�. This assertion can be used to shows the boundary between thin 
and thick plate. Furthermore, it is seen that at the 96 % confidence level, the values from the present study 
are the same with those from of previous studies, confirming the accuracy and reliability of the derived 
relationships.  

Keywords: CCCS plates, traditional higher-order shear deformation plate theory, shear correction factors, moment, 
and stresses. 

I. INTRODUCTION 

Thick plate bending problems are basic issues in 
mechanical and civil engineering as well as in structural 
engineering. Plates has wide applications in floor slabs 
for buildings, bridge decks and flat panels for aircrafts. 
In view of their relevance, the problems regarding its 
bending due to applied load required much attention. 
Attentions have actually been given to the bending 
problems of thin plate by using classical plate theorems 
(CPT) for its analysis. The CPT which assumes that 
normal to middle plane did not bend after deformation 
shows that the transverse shear deformation was 
ignored during formulation makes the theory inaccurate 
and unreliable when dealing with thick plate.   
First order shear deformation theory (FSDT) has been 
employed by many researchers to analyze thick plates. 
The theory unlike classical plate theory (CPT) took 
account of the shear deformation by introducing shear 
correction factor to satisfy the constitutive relations for 
transverse shear stresses and shear strains. Mindlin’s 
[4-6] and Reissner’s theory [10, 12] adopted FSDT in 
their work by employing a stress and displacement 
based approach respectively, which incorporates the 
effect of shear deformation. FSDT is discovered to have 
assumed transverse shear stress to be constant through 
the thickness of the plate, which violates the shear 

stress free surface conditions on the top and bottom 
surfaces of the plate. 
“Reddy’s third-order [9], and other higher-order shear 
deformation plate theory [2, 3, 9, 10, 12 and 
13].Ibearugbulem and Onyeka [13] applied nonlinear 
strain–displacement polynomial third order shear 
deformation theory for rectangular thick plate under 
uniformly distributed load case”. 
Onyeka and Ibearugbulem [2] applied nonlinear strain–
displacement polynomial third order shear deformation 
theory for rectangular thick plate under uniformly 
distributed load case. Their work did not consider thick 
rectangular plates with clamped at three edges and 
simply supported at the remaining one edge. 
This study uses fourth order polynomial shape function 
of the plate and applied in the shear deformation theory 
to analyze the bending behavior of thick rectangular 
plate with clamped at three edges and simply supported 
at the remaining one edge (CCCS) carrying uniformly 
distributed load. From the theory, the shear deformation 
profile for vertical shear stress through the thickness of 
the plate was formulated from the first principle as the 
deformation line as given in Equation 5 and incorporate 
to the energy equation established.   
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II. FORMULATION OF TOTAL POTENTIAL ENERGY 

Our formulation of the direct governing equation for thick 
plate under pure bending is based on Fig. 1 below.

 

Fig. 1. An element of thick rectangular plate showing 
middle surface. 

The total potential energy expression for a thick 
rectangular plate with length, a; width, b and at constant 
thickness with mid-plane layer separation under 
uniformly distributed load [8], is presented as: 

Π = � � ��������� − 2�������� + �������� +�����2�� ���
∝� �� − 2�� ����∝� �� − 2�� ���!∝� ��" + �#1 +

%&�� ���!∝� ��" + #�'(&
� ��� ���

∝� �� + �� �!�
∝� ��" + ��� ���

∝) ��  −
2�� ���!∝) �� + �� �!�

∝) ��" + #�'(&
� �*��+����+ +

,�-)�!�
∝� �."/ 012345 −

� � ��67)
8 ���9/���� 014345                                                      (1) 

Where the length-breadth and span-thickness aspect 
ratio are given as: 

∝ = 10  0:2  * = 0 ;  

III. GOVERNING DIFFERENTIAL EQUATION 

The general polynomial deflection function deflection 
equation of a rectangular plate is defined as: 

< = =7+ . =?+1152 (1.53� − 2.53� +  3+) × (5� − 25� + 5+) 
(2) 

Let the amplitude, 

�� = =7+48 × =?+24 = =7+ . =?+1152                                                          (3) 
and; ℎ = (1.53� − 2.53� + 3+) × (5� − 25� + 5+)                (4) 
Shear deformation profile of the thick rectangular 
section of plate used in this study is given as: 

=(F) = 53 GF� − 2F;� H                                                                   ( 5) 
To get the solution of the governing equation, equations 
1 must be differentiated with respect to coefficient of 
deflection �� , coefficient of shear deformation at  x −axis �� and coefficient of shear deformation at  y − axis �� to have: O���� − O���� − O����

= P0+
Q �6                                                     (6) 

−O���� + O���� + O���� = 0                                                   (7) −O���� + O���� + O���� = 0                                                    (8) 
By solving equations 6, 7 and 8 simultaneously, we get; 

�� = P0+
Q U �6O��V� − O��V� − O��V�W                                         (9) 

Let: 

��YYY = U �6O��V� − O��V� − O��V�W                                               (10) 
That is: 

�� = ��YYY UP0+
Q W                                                                           (11) 

Similarly; 

�� = �̅ UP0+
Q W                                                                            (12) 

Similarly; 

�� = ��YYY UP0+
Q W                                                                          (13) 

IV. DISPLACEMENT, STRESSES AND STRESS  
RESULTANT ANALYSIS OF THE PLATE 

The expressions for the moment, displacement, 
stresses and stress resultants of isotropic rectangular 
thick plate are developed using the elastic principles as 
given: 

< = ��YYYℎ UP0+
Q W                                                                         (14) 

[\ = U−����YYY ]2�ℎ23� + % 2�ℎ25�^
+ �� ]��YYY 2�ℎ23� + %��YYY 2�ℎ25�^W P0�        (15) 

That is: [\ = [\YYYYP0�                                                                               (16) 
Where; 

Q =  _;�
12(1 − %�) ; Q� =  ��Q; 0:2 Q� = ��Q                    (17) 

Similarly; 

[` = U−���̅ ]2�ℎ25� + % 2�ℎ23�^
+ �� ]��YYY 2�ℎ25� + %��YYY 2�ℎ23�^W P0�      (18) 

That is: [` = [`YYYYP0�                                                                            (19) 
Similarly; 

5\ = P0 U−��YYY ]4�ℎ43� + % 4�ℎ45�^
+ ]��YYY 4�ℎ43� + %��YYY 4�ℎ45�^W     (20) 

That is: 5\ = 5\YYYYP0                                                                                  (21) 
Similarly; 

5` = P0 U−��YYY ]4�ℎ43� + % 4�ℎ45�^
+ ]��YYY 4�ℎ43� + %��YYY 4�ℎ45�^W                     (22) 

That is: 5` = 5`YYYYP0                                                                                  (23) 
a = #−��YYYb +  ��YYY=(b)& 2ℎ23 UP0+

ρQ W                                        (24) 
Similarly; 

c = 1∝ #−��YYYb + ��YYY=(b)& 2ℎ25 U;P0�
Q W                                   (25) 
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d\ = 12 e#−��YYYb +  ��YYY=(b)& 2�ℎ23�

+ %∝� #−��YYYb + ��YYY=(b)& 2�ℎ25�f (qρ�) (26) 
Similarly; 

d` = qρ� ]12 h]%#−��YYYb +  ��YYY=(b)& 2�ℎ23�^
+ %∝� #−��YYYb + ��YYY=(b)& 2�ℎ25� h^            (27) 

Similarly; 

i\` = 6 (1 − %)∝ j−2��YYYb +   ��YYY=(b)
+ ��YYY=(b). 1∝k 2�ℎ4345 (qρ�)                  (28) 

Similarly; 

i\l =   6(1 − %)��YYY 2=(F)2F 2ℎ23 (qρ�)                                      (29) 
Similarly; i`l = 9(�'()

∝ ��YYY mn(l)
ml

mo
mp (qρ�)                                                 (30) 

V. NUMERICAL ANALYSIS 

Determine the deflection at the center (�
� , �

� , and 0)  of 

CCCS thick plate. A polynomial displacement function 
as developed in Equations 2, 3 and 4 shall be used to 
determine the value of stiffness coefficient which is 
presented in Table 1. The values of displacements, 
stresses and stress resultants at the edges of the plate 
are presented in the Table 2 to 6. More so, a 
comparison is made with those from [3] and [1] 
considering center deflection of CCCS square 
rectangular thick plate to check the accuracy of this 
method. The result of this comparison is presented in 
the Table 7. 

VI. RESULTS AND DISCUSSION 

The result of non-dimensional center deflection, in plane 
displacement, moments, normal and shear stresses 
along x and y axes of CCCS rectangular plate as 
obtained are presented in the Tables 2 to 5.The result 
reveals that the non-dimensional values of in-plane 
displacement quantities, u and v, and that of out-of-
plane displacement quantities, w decrease as the span-
thickness ratio increases. The value of these quantities 
increases as the length-width ratio increases. 
Close look at Table 3, it can be seen that at span to 
thickness ratio more than 55, the value of transverse 
shear stress i`l is about 0.00001 when corrected to 5 

decimal place. But for the span to thickness between 20 
and 55, the value of transverse shear stress i`l varies 

between 0.0007 and 0.0001 respectively. Also, at span 
to thickness ratio less than 20, the value of transverse 

shear stress i`l is above 0.001. In the same way, from 

Table 4; it can be seen that at span to thickness ratio 
more than 55, the value of transverse shear stress i`l is 

about 0.00001 when corrected to 5 decimal place. But 
for the span to thickness between 20 and 55, the value 
of transverse shear stress i`l  varies between 0.0006 

and 0.0001 respectively. Also, at span to thickness ratio 
less than 20, the value of transverse shear stress i`l is 

above 0.001. Similarly, from table 5; it can be seen that 
at span to thickness ratio more than 55, the value of 
transverse shear stress i`l  is about 0.00001 when 

corrected to 5 decimal place. But for the span to 
thickness between 20 and 45, the value of transverse 
shear stress i`l  varies between 0.0003 and 0.0001 

respectively. Also, at span to thickness ratio less than 
20, the value of transverse shear stress i`l  is above 

0.001. From the result, it can be discovered that there 
are three classes of rectangular plate. The plates whose 
vertical shear stressdo not differ much from zero shall 
be classified as thin plates because its value are almost 
equal to the value of CPT. The ones that differ very well 
from zero shall be classified as thick plates. In between 
the thick plate and thin plate is the class for moderately 
thick plate. Thus, the span-to-depth ratios for these 
classes of rectangular plate are: Thick plate∶ 0/; ≤ 20; 
moderately thick plate: 20 ≤ 0/; ≤ 50; thin plate:  0/; ≥ 50. This assertion can be used to shows the boundary 
between thin and thick plate. 
As per Ibearugbulem and Onyeka rectangular plate 
under uniformly distributed load case showed the 
advantages of polynomial function over trigonometric 
and exponential when analyzing a more complex or 
thick plate problem” [13]. 
From Table 6, comparison made from the present study 
for CCCS plate and those from past scholars (when 
multiplied by 100) shows that, present theory predicts a 
slightly higher value of in-plane displacement, 
transverse (central) deflection, in-plane normal stresses, 
in-plane shear stress and out plane shear stress for all 
aspect ratios, this proves some level of accuracy and 
safety of the analysis. The maximum percentage 
difference between the values from the present study 
and those of [3] is about 3.74%. Also, the maximum 
percentage difference between the values from the 
present study and those of [1] is about 3.86%.  
Consequently, the average total percentage difference 
between the values from the present study and those of 
[3, 1] is about 3.81 %. This means that at the 96 % 
confidence level, the values from the present study are 
the same with those from of previous studies. This value 
is satisfactory in the statistical analysis. Then, it can be 
said that the values obtained are in agreement with 
those obtained in the literature. Thus, confirming the 
accuracy and reliability of the derived relationships. 

 

Table 1: Stiffness coefficient values for CCCS rectangular plate using orthogonal polynomial displacement 
function. 

tuvw xyz{w |} |� |~ |� |
 |� 

1 CCCS 0.0028571 0.0016327 0.0060317 0.0001361 0.00014361 0.0025 
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Table 2: Bending Moments, Shear Force and Stress resultants of CCCS plate for b/a = 1.0. 

ρ = a
t  

< = <� UP1+
Q W [\ = [\YYYYP0� [` = [`YYYYP0� 5\ = 5\YYYYP0 5` = 5`YYYYP0 

w�  [\YYYY [`YYYY 5\YYYY 5`YYYY 

4 0.002987316 0.295421 0.298972 1.045017 2.292187 

5 0.002785796 0.310939 0.323968 0.92112 2.017948 

6 0.002391581 0.298228 0.320335 0.741935 1.619265 

7 0.00216945 0.290704 0.318515 0.641014 1.393626 

8 0.002030992 0.285851 0.317483 0.578129 1.252529 

9 0.001938516 0.282528 0.316845 0.536139 1.15807 

10 0.001873546 0.280151 0.316424 0.506643 1.091588 

15 0.001723424 0.274508 0.315544 0.438509 0.816195 

20 0.001672083 0.272526 0.315276 0.415214 0.816771 

25 0.001648524 0.271606 0.315159 0.404526 0.817062 

30 0.00163578 0.271106 0.315098 0.398745 0.817227 

35 0.001628114 0.270805 0.315062 0.395267 0.817329 

40 0.001623146 0.270609 0.315038 0.393013 0.817395 

50 0.00161731 0.270378 0.315011 0.390366 0.817475 

55 0.001615511 0.270307 0.315003 0.38955 0.8175 

60 0.001614144 0.270253 0.314996 0.38893 0.817519 

65 0.00161308 0.270211 0.314991 0.388447 0.817533 

70 0.001612235 0.270178 0.314987 0.388064 0.817545 

75 0.001610997 0.270129 0.314982 0.387503 0.817562 

80 0.001610997 0.270129 0.314982 0.387503 0.817562 

85 0.001610536 0.27011 0.31498 0.387293 0.817569 

90 0.001610149 0.270095 0.314978 0.387118 0.817574 

95 0.001609821 0.270082 0.314976 0.386969 0.817579 

100 0.001609542 0.270071 0.314975 0.386842 0.817583 

1000 0.001606981 0.26997 0.314963 0.077137 0.817619 

Table 3: Non-displacement and Stresses of CCCS plate for b/a = 1. 0. 

∝= �
z = }. � 

� = z
{  

� = �� U���
� W � = �� U���

�� W � = �� U���
�� W �� = ��YYY(���) �� = ��YYYY(���) ��� = ���YYYY(���) ��� = ���YYYY(��~) ��� = ���YYYY(��~) 

��  �� �Y ��YYY �uYYY ��uYYYY ���YYYY �u�YYYY 

4 0.002987316 -0.001187 -0.003272 0.232305 0.255794 -0.02906 0.0038617 0.0165864 

5 0.002785796 -0.001163 -0.003254 0.22845 0.253594 -0.028669 0.0028994 0.0129176 

6 0.002391581 -0.001046 -0.002986 0.206552 0.231778 -0.026031 0.0018921 0.0086656 

7 0.002169450 -0.000979 -0.002837 0.194093 0.219562 -0.024539 0.0013383 0.0062451 

8 0.002030992 -0.000936 -0.002745 0.186272 0.211981 -0.023606 0.0009993 0.0047250 

9 0.001938516 -0.000908 -0.002684 0.181022 0.206935 -0.022982 0.0007760 0.0037042 

10 0.001873546 -0.000888 -0.002641 0.177319 0.203399 -0.022543 0.0006208 0.0029841 

15 0.001723424 -0.000840 -0.002543 0.168712 0.195259 -0.021526 0.0002677 0.00131 

20 0.001672083 -0.000824 -0.00251 0.165751 0.192486 -0.021177 0.0001490 0.0007338 

25 0.001648524 -0.000817 -0.002495 0.164389 0.191216 -0.021017 9.488E-05 0.0004687 

30 0.00163578 -0.000813 -0.002487 0.163652 0.190529 -0.02093 6.571E-05 0.0003252 

35 0.001628114 -0.00081 -0.002482 0.163208 0.190117 -0.020878 4.82E-05 0.0002388 

40 0.001623146 -0.000809 -0.002479 0.16292 0.189849 -0.020844 3.686E-05 0.0001827 

45 0.001619743 -0.000808 -0.002476 0.162723 0.189666 -0.020821 2.91E-05 0.0001443 

50 0.00161731 -0.000807 -0.002475 0.162582 0.189535 -0.020804 2.356E-05 0.0001169 

55 0.001615511 -0.000806 -0.002474 0.162477 0.189438 -0.020792 1.947E-05 9.659E-05 

60 0.001614144 -0.000806 -0.002473 0.162398 0.189365 -0.020783 1.635E-05 8.116E-05 

65 0.001612235 -0.000805 -0.002472 0.162287 0.189262 -0.020770 1.201E-05 5.962E-05 

70 0.001610997 -0.000805 -0.002471 0.162216 0.189195 -0.020761 9.192E-06 4.564E-05 

75 0.001610997 -0.000805 -0.002471 0.162216 0.189195 -0.020761 9.192E-06 4.564E-05 

80 0.001610536 -0.000805 -0.002471 0.162189 0.189171 -0.020758 8.141E-06 4.043E-05 

85 0.001610149 -0.000804 -0.00247 0.162166 0.18915 -0.020755 7.261E-06 3.606E-05 

90 0.001609821 -0.000804 -0.00247 0.162147 0.189132 -0.020753 6.516E-06 3.236E-05 

95 0.001609542 -0.000804 -0.00247 0.162131 0.189117 -0.020751 5.881E-06 2.921E-05 

100 0.001606981 -0.000803 -0.002468 0.161983 0.188979 -0.020734 5.877E-08 2.92E-05 

1000 0.001615511 -0.000806 -0.002474 0.162477 0.189438 -0.020792 1.947E-05 9.659E-05 
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Table 4: Non-displacement and Stresses of CCCS plate for b/a = 1. 5. 

∝= �
z = }. 
 

� = z
{  

� = �� U���
� W � = �� U���

�� W � = �� U���
�� W �� = ��YYY(���) �� = ��YYYY(���) ��� = ���YYYY(���) ��� = ���YYYY(��~) ��� = ���YYYY(��~) 

��  �� �Y ��YYY �uYYY ��uYYYY ���YYYY �u�YYYY 

4 0.006011736 -0.002411 -0.004809 0.407324 0.304534 -0.040937 0.007493 0.016974 

5 0.005048547 -0.002164 -0.004345 0.365879 0.274518 -0.036860 0.004544 0.010389 

6 0.004564017 -0.002039 -0.004114 0.344981 0.259477 -0.034813 0.003067 0.007053 

7 0.004283849 -0.001966 -0.003981 0.332879 0.250803 -0.033631 0.002215 0.005114 

8 0.004106588 -0.001920 -0.003897 0.325213 0.245325 -0.032884 0.001678 0.003883 

9 0.003987075 -0.001889 -0.003841 0.320040 0.241637 -0.032380 0.001316 0.003051 

10 0.003902571 -0.001867 -0.003801 0.316381 0.239032 -0.032024 0.001060 0.002461 

15 0.003705631 -0.001816 -0.003709 0.307845 0.232969 -0.031195 0.000465 0.001084 

20 0.003637743 -0.001798 -0.003677 0.304900 0.230883 -0.030910 0.000261 0.000608 

25 0.003606500 -0.001790 -0.003662 0.303544 0.229923 -0.030779 0.000166 0.000388 

30 0.003589576 -0.001786 -0.003654 0.302809 0.229403 -0.030707 0.000115 0.000269 

35 0.003579388 -0.001783 -0.00365 0.302367 0.229090 -0.030665 8.48E-05 0.000198 

40 0.003572781 -0.001781 -0.003647 0.302080 0.228887 -0.030637 6.49E-05 0.000151 

45 0.003568255 -0.001780 -0.003644 0.301884 0.228748 -0.030618 5.12E-05 0.000120 

55 0.003562625 -0.001779 -0.003642 0.301639 0.228576 -0.030594 3.43E-05 8.01E-05 

60 0.003560805 -0.001778 -0.003641 0.30156 0.228520 -0.030587 2.88E-05 6.73E-05 

65 0.003559389 -0.001778 -0.003640 0.301499 0.228476 -0.030581 2.45E-05 5.73E-05 

70 0.003558265 -0.001777 -0.003640 0.301450 0.228442 -0.030576 2.12E-05 4.94E-05 

75 0.003556617 -0.001777 -0.003639 0.301378 0.228391 -0.030569 1.62E-05 3.78E-05 

80 0.003556617 -0.001777 -0.003639 0.301378 0.228391 -0.030569 1.62E-05 3.78E-05 

85 0.003556003 -0.001777 -0.003639 0.301352 0.228372 -0.030566 1.44E-05 3.35E-05 

90 0.003555487 -0.001777 -0.003638 0.301329 0.228357 -0.030564 1.28E-05 2.99E-05 

95 0.003555052 -0.001777 -0.003638 0.301310 0.228343 -0.030562 1.15E-05 2.68E-05 

100 0.003554680 -0.001777 -0.003638 0.301294 0.228332 -0.030561 1.04E-05 2.42E-05 

1000 0.003551270 -0.001776 -0.003636 0.301146 0.228227 -0.030546 1.04E-07 2.42E-07 

Table 5: Non-displacement and Stresses of CCCS plate for b/a = 2.0 

∝= �
z = �. � 

� = z
{  

� = �� U���
� W � = �� U���

�� W � = �� U���
�� W 

��= ��YYY(���) �� = ��YYYY(���) ��� = ���YYYY(���) 
���= ���YYYY(��~) ��� = ���YYYY(��~) 

��  �� �Y ��YYY �uYYY ��uYYYY ���YYYY �u�YYYY 

4 0.007617847 -0.003098 -0.004838 0.491497 0.285037 -0.040308 0.0089553 0.012754 

5 0.006536840 -0.002832 -0.004402 0.449086 0.259913 -0.036759 0.0054983 0.007788 

6 0.005986527 -0.002697 -0.004179 0.427511 0.247095 -0.034949 0.0037361 0.005274 

7 0.005666313 -0.002618 -0.004049 0.414963 0.239625 -0.033895 0.0027098 0.003817 

9 0.005325508 -0.002534 -0.003910 0.401613 0.231665 -0.032771 0.0016167 0.002272 

10 0.005228164 -0.002511 -0.003870 0.397801 0.229390 -0.032450 0.0013043 0.001832 

15 0.005000772 -0.002455 -0.003777 0.388899 0.224070 -0.031699 0.0005743 0.000805 

20 0.004922217 -0.002436 -0.003744 0.385824 0.222230 -0.031439 0.000322 0.000451 

25 0.004886036 -0.002427 -0.003730 0.384408 0.221383 -0.031319 0.0002058 0.000288 

30 0.004866429 -0.002422 -0.003722 0.383641 0.220924 -0.031255 0.0001428 0.000200 

35 0.004854623 -0.002419 -0.003717 0.383179 0.220647 -0.031216 0.0001048 0.000147 

40 0.004846967 -0.002417 -0.003714 0.382879 0.220468 -0.031190 8.025E-05 0.000112 

45 0.00484172 -0.002416 -0.003711 0.382674 0.220345 -0.031173 6.339E-05 8.87E-05 

50 0.004837969 -0.002415 -0.003710 0.382527 0.220257 -0.031160 5.134E-05 7.19E-05 

55 0.004835195 -0.002414 -0.003709 0.382418 0.220192 -0.031151 4.242E-05 5.94E-05 

60 0.004833085 -0.002414 -0.003708 0.382336 0.220143 -0.031144 3.565E-05 4.99E-05 

65 0.004831443 -0.002413 -0.003707 0.382272 0.220104 -0.031139 3.037E-05 4.25E-05 

70 0.004830140 -0.002413 -0.003707 0.382221 0.220074 -0.031135 2.619E-05 3.67E-05 

75 0.004828230 -0.002413 -0.003706 0.382146 0.220029 -0.031128 2.005E-05 2.81E-05 

85 0.004828230 -0.002413 -0.003706 0.382146 0.220029 -0.031128 2.005E-05 2.81E-05 

90 0.004827517 -0.002412 -0.003706 0.382118 0.220012 -0.031126 1.776E-05 2.49E-05 

95 0.004826920 -0.002412 -0.003705 0.382095 0.219998 -0.031124 1.584E-05 2.22E-05 

100 0.004826415 -0.002412 -0.003705 0.382075 0.219986 -0.031122 1.421E-05 1.99E-05 

1000 0.004825983 -0.002412 -0.003705 0.382058 0.219976 -0.031121 1.283E-05 1.80E-05 

Table 6: Comparison of values of non-dimensional center deflection multiplied by 100 of CCCS square 
rectangular thick plate obtained herein with those from [1, 3]. 

Span-depth ratio 
(a/t) 

Present Ezeh et al. (2018) [3] %Diff Present Li et al. (2015) [1] %Diff 

5 0. 2786 0.2434 14.46 0. 2786 0.2565 8.62 

10 0. 1874 0.1816 3.19 0. 1874 0.1833 2.24 

20 0. 1672 0.1660 0.72 0. 1672 0.1660 0.72 

50 0. 1617 0.1615 0.12 0. 1617 - - 

100 0. 1607 0.1609 0.12 0. 1607 - - 

Average % 
Difference 

3.74 3.86 

Total Average % 
Difference 

3.81 
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IV. CONCLUSION 

It can be concluded that the rectangular plate can be 
classified as thick plate, when the plate span-to-depth 
ratios is less or equal to twenty (0/; ≤ 20); it can be 
classified as moderately thick plate, when the plate 
span-to-depth ratios is between twenty and fifty: (20 ≤ 0/; ≤ 50);  when the plate span-to-depth ratios is 
greater or equal to twenty plate: 0/; ≥  50 This assertion 
can be used to shows the boundary between thin and 
thick plate. 
Furthermore, it is seen that at the 96 % confidence 
level, the values from the present study are the same 
with those from of previous studies, confirming the 
accuracy and reliability of the derived relationships. It is 
then, concluded that polynomial displacement function 
and higher order polynomial shear deformation theory 
can be used in confidence in the analysis of isotropic 
rectangular thick plate with clamped at three edges and 
simply supported at the remaining one edge (CCCS). 

V. FUTURE SCOPE 

Vibration analysis of rectangular thick plate applying 
trigonometric displacement function and higher order 
trigonometric shear deformation theory 
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